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ABSTRACT

With stock surpluses and shortages representing ainéhe
greatest elements of risk to wholesalers, a saolutiiothe multi-
retailer supply chain management problem would Itegu
tremendous economic benefits.  In this problem, irgles
wholesaler with multiple retailer customers musdfian optimal
balance of quantities ordered from suppliers armt@iable lead
time costs, while taking into account limiting faxt such as the
time each retailer will wait for a backorder. Tiodlowing four
evolutionary computations (EC) are utilized to fiadsolution:
evolutionary programming (EP), genetic algorithi@#\], particle
swarm optimizers (PSO), and estimation of distidmut
algorithms (EDA). In addition, problem-specific difications to
each are created. Of the 32 attempted algoritiimsfollowing
proved to be best with respect to the client-masdidést-suite:
Probabilistic Dual-Topology Full-Model PSO, Starpbdogy
Full-Model PSO using dynamically-adjusting learnirages, Out-
of-the-Box Star-Topology Full-Model PSO, and a Gaais-based
Star-Topology Full-Model PSO with the ConstrictiGoefficient.
A secondary test-suite was also developed toliestffectiveness
of the best algorithms on the problem. With respedhe client-
mandated and the developed test suite’s fitnessshbtd and
maximum number of function evaluations, the begbidthm had
an 87% and 90% success rate, respectively. Coigidéne
flexibility and high performance of the solutiondathe generality
of the problem, these results represent a significantribution to
commercial wholesaling.

Categories and Subject Descriptors
D.3.3 [Artificial Intelligence]: Problem Solving,
Methods, and Search.

Control

General Terms
Algorithms and Performance.
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1. INTRODUCTION

Regarded as a relatively new field, Evolutionarympatation
(EC) finds its earliest manifestations in the 185€rough the
work of Friedberg, Bremermann, and Box, among matiners.
Their EC contributions ranged from work in autoroati
programming (Friedberg), numerical optimization kjemns
(Bremermann), and industrial analysis and desigmegments.
Due to considerable skepticism, however, it wasumbi the mid-
1960s that we find the basis for what we today icmrsEC.
During this time, the foundations for EC were laig Lawrence
Fogel (Evolutionary Programming — EP), John HolldG&netic
Algorithms — GA), and the combined work of Bienert,
Rechenberg, and Schwefel (Evolutionary StrategidsS) [5].
Emerging from these three principle roots, a plethaf problem-
solving methodologies have entered into the EC manamong
the newer techniques, Estimation of Distributiongdithms
(EDA) and Particle Swarm Optimizers (PSOs) havergmato be
particularly useful. Our research spans the sodfevolutionary
Computation, but this paper focuses its main atiantn the best
performing ECs specific to this problem.

In the remainder of this section, a high-leveladiiction to each
of the techniques used in this research is providéext, Section
2 explains the Multiple Retailer Supply Chain Sgsteéroblem in
detail along with a breakdown of two test suiteseduso assess
each EC. Sections 3 and 4 detail the implememisitid the best
performing ECs and the results attainted, respelgtiv A
discussion then highlights these results in Sed&idollowed by a
conclusion in Section 6. Finally, a list of refeces is provided in
Section 7. To represent the broad spectrum of &@,techniques
are chosen in an attempt to solve this problem.

1.1 Evolutionary Programming

Early researchers in Atrtificial Intelligence wergnparily focused
on heuristic methods and the simulation of neuetvorks in an
effort to model human intelligence rather than adding the
practical goal of finding working solutions to pteins [3]. With

the meaning of intelligence under consideratiors &Rre devised
by Lawrence Fogel in order to evolve finite statactrines to
predict events on the basis of former observatidghrdiction was
then viewed as a crucial ingredient to intelligbahavior [6]. In

addition, EPs also proved useful as a stochasttimzation

technique for discovering the extrema of nonlirfeactions.



1.2 Genetic Algorithms

Deriving from cellular automata research, GAs ar@a®e a
theoretical interest point rather than solution aoreal-world
problem. Popularized by John Holland and his cglles, GAs
have traditionally employed crossover operatorsthesr main

means of variation [7]. This use of non-uniform atign provides
GA's with search capabilities that are less sugdepto the
premature convergence associated with more directettion

techniques. This very lack of direction, howevdteio limits GAs

in their ability to quickly converge to an optimsdlution, which
often excludes their use in optimization problefgrhaps the
most well-known EC, the GA is notable due its fleldy and

robustness.

1.3 Estimation of Distribution Algorithms
Selecting suitable parameter values for an EC eaarbonerous
optimization problem in and of itself. Another pheim of highly
parameterized ECs is the interaction of multiplerapseter
settings. In an effort to eliminate these proble®BAs were
devised so as to “predict movements of the pomnatn the
search space” by calculating the distribution oé tprevious
population [10]. EDAs do not use the operators tbum many
conventional forms of evolutionary computation, buastead
utilize correlation information among variables.particular, each
new generation is sampled from a joint probabitiigtribution
that approximates the discrete empirical distrinutof selected
individuals in the previous population. This pracesnables
EDAs to capture the structure of variables of ebfm. For these
reasons, EDAs can be a more efficient approach dtlaer ECs
for some problems.

1.4 Particle Swarm Optimization

Particle Swarm Optimizers were devised and develope

embody the fundamental concept that social sharofg
information provides an evolutionary advantage [A]early PSO
work, particles explored multi-dimensional, nonelan space
using a simple strategy, in which the velocity qfaaticle depends
solely on a cognition and a social factor. Manyataons of PSO
have been developed to improve performance, anch reéfort

has been focused on finding optimal settings foiouws algorithm

parameters. The effectiveness of a PSO banks uponse of
collective knowledge of the fitness landscape asdability to

quickly explore the search space.

2. THEMULTIPLE RETAILER SUPPLY
CHAIN SYSTEM PROBLEM

2.1 Problem Overview
In order for a product to reach the customer, isingo through a
supplier, a wholesaler, and a retailer. The Ret&lepply Chain
problem arises when a wholesaler tries to effitjeptovide for
its retailers and their customers while balancimgltcost. In the
past, the quantities a wholesaler would supplysadtailers were
based on educated guessing and trial and error siitiilation
models. The objective of the multiple retailer siypghain system
problem is to minimize the total cost for a wholesaHere, this is
attempted by using evolutionary computation. Thaltcost for a
wholesaler is calculated as the sum of the ordecosys, supply
costs, and holding (or storage) costs taken aalbfise retailers.
These are a function of the following variables:

« Number of retailers R

« Ordering Cost of a single itemG;

« Item storage costEy

« Average number of items requesteq.g
« Std. deviation of number of items requestegl—
» Quantity ordered by each retaileQ-
(Note thatQpi, is 0 whereaf). is the correspondingay
plus two times the corresponding.)
« Maximum time retailer will wait for back orderM
» Minimum cost associated with back order lead timmppsed
by supplier -Cin
« Maximum cost associated with back order
proposed by supplier G
» Acceptable lead time of the supplier for particuketailer —L
« Minimum viable lead time of the supplier for retail-Ly,
» Maximum viable lead time of the supplier for regait-L .y
« Cost of lost sales in case retailer chooses toongdr do
business with supplierGg s
« Actual number of items requested by the retailer —
Although based on total cost, the client-specifigtkss function
actually weighs the ordering cost more heavily tttemother two
expenses. In particular, each fitness value isstim of the total
ordering cost @Cost) and the average of the sums of holding
(HCost) and shortageSCost) costs over all retaileRR (Eq. 2.1).

R
Fitness = OCost + %Z(HCostk + SCost, )

k=1

lead time

Eq. 2.1

The ordering cost is simply the prod@tand total quantity order
by all the retailers (Eq. 2.2).

n
OCost=C,» Q,

=1

Eq. 2.2

The holding cost i€} times the excess quantity ordered (Eq 2.3).

HCost =C, max{iQj —Zn:xj ,O}
j=1

=

Eq. 2.3

The shortage cost is the sum of aibividual shortage costs
associated with each retailer. Andividual shortage cost is
maximum of 0, ang 5, which is defined in Eq. 2.4.

C..—C._
CB,LS =(X_Q) ﬁ EQL_Lmin)-'-Cmax
- tfx-) [+ =0 the- 0

Eq. 2.4
The supplier distributes excess items among resaihose order
amount exceeds the supplier’s initial estimate.s€hparameters
are set to values in accordance with the clientifipd test suite
in order to find the best performing algorithm. @&l second test
suite is devised to further analyze the best penifog algorithms.

2.2 Client-Specified Test Suite

In this primary test suite, the premise of a tegtbacupplier is

employed to determine the test suite parameteesallihe fitness
threshold has been set at 174400 by the clients, Tlawholesaler
supply configuration, represented as either a chsome or
particle location, is considered a solution whenfttness maps to
a value less than 174400. Configurations mappedntaller

values are said to be more fit than those that ymedarger
values. In this test suit® = 5,C, = 75, andCy = 10. Moreover,
Table 2.1 displays the initial values for the remmag variables.



Table 2.1 Client-Specified values

R# Qavg | O« M Cmi n Cmax L min L max CB LS
1 375| 45 14| 200 700 2 11 825
2 565| 85 5 375 1025] 2 4 1477
3 725| 75 7 325 985 2 7 125(
4 165 | 30 10 275 825 2 10 830
5 50 30 7 275 325 2 6 325

2.3 Secondary Test Suite

While the first test suite is applied to all 32 E@se secondary
test suite is applied only to the four best perfagmECs. In
contrast, the secondary test suite draws upon temige of a
toothpaste supplier. One of the reasons is thathpeste is
vended by diversely-sized retailers ranging fronofiiand Pop”
stores to Super Wal-Marts. The uniform price acrbsands
brought on by the flat demand curve associated tuittthpaste
allows for reasonably setting the item cost tonals, non-varying
value. The retailers in Table 2.2 are matchethéddllowing:
Gas station close to supplier

Small store close to supplier

Grocery store far from supplier

Medium retail store close to supplier

. Large retail store far from supplier

The fitness threshold for this particular test esuis set at
24200000. Don't forget that algorithm configurasomapped to
smaller values are said to be more fit than thésé¢ produce
larger values. In this test suite,= 5, C, = 10, andC, = 1. Also,
Table 2.2 displays the initial values for the remiag variables.

Table 2.2 Secondary Test Suite values

aAwNE

R# qqu qu M Cmi n Cmax L min L max CB LS
1 10 6 8 26 35 1 8 40
2 29 15 6 24 50 1 7 116
3 84 34 5 32 65 1 6 336
4 247 74 3 21 88 1 3 988
5 734 | 147 2 28 80 1 4 2934

3. IMPLEMENTATION

Section 3 begins by outlining the implementationtioé ECs
employed on this particular problem, followed by naore
thorough description of the implementation of PS@® top
performing EC, and then the implementation of tbarfbest
performing algorithms. Note: The list of parametealues
mentioned in each subsection is only fully testedtle out-of-
the-box algorithms, while each modification testapdy the best
parameter set combination from each out-of-the-ddgarithm.

3.1 ECsOverview
3.11EP

Four different EP algorithms are implemented inagtempt to
solve the Supply-Chain Management Problem:

1. Standard EP (SEP)

2. Continuous Standard EP (CSEP)

3. Meta EP (MEP)

4. Continuous Meta EP (CMEP)
In an effort to improve performance, a modified aaithm for
each EP is created. Next, are the characteristigdoged in each.
Sdlection strategy: (1 +A) for all EPs ¢ = 1 for CSEP and CMEP

Variation: mutation with Gaussian variation is used by dlsE
Moreover, MEP and CMEP utilize strategy parameteesdo,
which are evolved throughout the algorithm, to adap amount
of mutation to best fit the particular problem.
Parameter Values:

u: [5, 9, 10, 50, 100]

C: [100, 200, 500, 550, 1000, 2000, 3000, 3500, 4@600,

5000, 6000, 10000, 13000, 20000, 50000, 10000QEBO

500000, 1000000]

# of competitors: [1, 7, 2/3]

n:[0.1, 0.2, 0.3, 0.4]

o: [10%, 30%, 50%].
The C value is used as a divisor to the square roch®foarent’s
fitness in SEP and CSEP because the mutation atigiyielded
by the square root of the parent’s fithess almbstys landed
outside the allele bounds. Note that the aforeroaet
parameters do not apply to all EPs, but are usestendpplicable.

3.12GA
This research showed that GAs can efficiently dediar a
solution to the Supply Chain Management System IEnobFour
different genetic algorithms are implemented:

1. Binary-Coded Elitist Generational GA (BCEG)

2. Real-Coded Elitist Generational GA (RCEG)

3. Binary-Coded Steady State GA (BCSS)

4. Real-Coded Steady State GA (RCSS)
As with the EPs, four modifications are devisecaimattempt to
achieve superior performance. The characterisfiemaoch GA are
as follows.
Selection strategy: Generational Strategy is used with BCEG and
RCEG, while always keeping the best found individiditism).
A Steady State Strategy is used for BCSS and RCSS.
Parent Selection: Binary Tournament selection is used for GAs.
Variation: Uniform Crossover is used for the two Binary-Coded
GAs, while BLX-0.5 is used for the Real-Coded aitjons.
Parameter Values:

u: [5, 10, 20, 50, 100]

BMR: [1%, 3%, 5%, 7%, 10%)]

Resolution: 20 bit gene representation (Binary-@yde

o: [1%, 3%, 5%, 7%, 9%, 10%, 30%, 50%, 70%, 90%]

3.1.3EDA
Although numerous EDA variants exist, this reseasdimited to
the following four:

1. Binary-Coded EDA (BCE)

2. Real-Coded EDA (RCE)

3. Elitist Binary-Coded EDA (EBCE)

4. Elitist Real-Coded EDA (ERCE)
Once again, four more variations are created. Taia mspects of
the four out-of-the-box algorithms are listed below
Selection strategy: A Generational Strategy is used for all EDASs,
while EBCE and ERCE also always keep the best found
individual (elitism).
Parent Selection: The number of parents selected (u) is set at 50%
of the population size.
Variation: A probability distribution function is used to ate
offspring in Binary-Coded EDAs, whereas, a prohgbillensity
function is used for their Real-Coded counterparts.

andA = p for SEP and MEP). Also, competition-determined pgrameter Values: A: [6, 10, 20, 30, 40, 50, 100]

subjective fitness for population sizel0 for SEP and MEP.

Parent selection: random parent selection is used for CSEP and 3.1.4 PSO

CMEP, while every individual in the population sery as a
parent in the remaining two EPs.

This work implements four canonical PSO algorithms:
1. Ring-Topology Full-Model PSO (OOBRT)



2. Star-Topology Full-Model PSO (OOBST)
3. Ring-Topology Full-Model PSO (with Constriction
Coefficient) (OOBRTK)
4. Star-Topology Full-Model
Coefficient) (OOBSTK)
Each of these satisfies the Full-Model definitioy having
positive-valued learning rates. More specificalthe learning
rates are set to 2.05 to comply with the requirdmen Clerc’'s
Constriction Coefficient K [2]. The other influeati
characteristics are as follows:
Social Influence: Both Ring-Topology algorithms utilize a
neighborhood best location in calculating theirisbcomponent,
whereas, both Star-Topology algorithms use the ajldiest
location in computing the social component.
Variation: Velocity vectors supply PSOs with variation, and a
initialized to 0.
Parameter Values:
p: [10, 20, 30, 40, 50, 100, 125]
Vmax= Xmax

Vinin = ~Xmin

3.2 PSO Overview

Each techniqgue made use of standard equations fioufid. In
Eq. 3.1, a particle’s velocity iy is updated using the particle’s
cognition factor B and social factor fg. The cognition factor is
the best location a particle has ever occupiedredsethe social
factor is the best location ever occupied by oné@soheighbors.
Each component X of the particle’s current location is updated
using Eqg. 3.2. This update occurs asynchronouslgther words,
the neighborhood best or global best location (ddjmg on
algorithm) is updated after every one of the x-wectpdates.

Vig =[Vig +@Llrand() [(pig = %ia)
+@2[tand () L{py — Xiq )]

X =X +V, Eq. 3.2

The learning rate parameteps and ¢, are each set to positive
values in accordance with the Full-Model specifmat The PSOs
use various methods for controlling the magnitutithe velocity.
Moreover, a v-vector's component is set to 0 whdme t
corresponding Xx-vector component goes outside oheitso
boundaries. Finally, all algorithms utilize asynmhous updates.
That is, topological information is updated durithge course of
each iteration, rather than in between iterations.

3.21 PO Ring

As with all PSOs, the ring-based Full-Model PSOrdees a
fitness landscape using a collection of particksch of which
encapsulates vectors representing its currentitogabest found
location, velocity, and the fitness values corresfing to the two
locations [9]. The trajectory of any given partideer time is
determined by three factors: the location of itstfitness value, a
certain degree of (pseudo) random behavior, andnfheence of
their neighbors. A neighborhood of a particle Raigredefined
grouping of particles containing P, such that Potke” the best
location ever occupied by every particle in the. sBtch
knowledge can be limited to neighborhoods of a i§ipegize. In
each ring-based PSO, these neighborhoods are pperp fixed-
length arcs of a predefined and static circle fating the particles
(hence the name ring topology). In this implemeatat each
neighborhood consists of three particles. Each-baged PSO
first initializes its particle population. Recaliat each particlé
contains three vectors, p;, andv; that respectively denote the

PSO (with Constriction

Eq. 3.1

particle’s current location, best location, andoedly. Initially,
the components of, are randomly generated values that lie within
problem specific bounds. Vector i3 set equal to;xand v is
initialized to the zero vector. The current locatiectors are then
evaluated using the fitness function, and the titexaprocess
begins. During every iteration, each particle clenigs location
using the update equations (Eq. 3.1 and Eq. 3.2).

3.2.2 PO Sar

A Star Topology PSO differs from a Ring Topology@Sery
little. Using a star topology means that everyipkets connected
to every other particle in such a way that it knaweere the best
found particle is, no matter how far. This knowledgads to its
second and final difference: how the particle islatpd. Again,
the updating formula used is very similar to rilogdlogy, with
one slight difference, the use of a global besttemt, instead of a
neighborhood best solution. When computing the adoci
component of the equation, the global best solui®nused
instead of the neighborhood best as in a ring tupol

3.2.3 Congtriction Coefficient (K)

[2] defines a constriction coefficient, K, whichdssigned to limit
the velocity vector’'s magnitude. The definitionkofs provided in
Eq. 3.3 and utilized to compute the velocity in Bat.

2
K = Eq. 3.3
2-p-\p? -4
Vig = K[Vy +@lirand() [(piy = X4)
+¢20tand() l{pgy — X )] Eq. 3.4

3.3 Best Performers

Among all algorithms implemented in the client-matetl test
suite, the best performing four are three PSO nwadibns and
one out-of-the-box PSO. The implementation of eathhese
four algorithms is outlined in the following subseas.

3.3.1 Probabilistic Dual-Topology Full-Model PSO

(PDT)

[4] concludes that using small neighborhoods presspremature
convergence, whereas the use of global neighboshouleases
convergence speed. Since both of these propergedesirable,
PDT incorporates both small and large neighborhodds
particular, PDT tracks the best locations in thpeeticle
neighborhoods and a global neighborhood. When dicfear
updates, it has a 1000*% chance of using the neighborhood best
location g shown in Eq. 3.1. It has a 1-10Q % chance of using
the global best individual in place of the neightmyd best. The
value of A decreases with each update iteration through the
population according to the equation

= 3
1+In(t +2)

wheret is the iteration number initially equal to zerdug, this
modification encourages a high level of variationitially, but
gradually focuses the search as time progresséisimanner, it
continues to explore a large part of the fitnesslsgape but has
faster convergence than with the out-of-the-boxgRimpology
Full-Model PSO.

3.3.2 Sar-Topology Full-Model PSO (OOBST)
This is the same Star-Topology Full-Model PSO, dbsd in [1].



3.3.3 Sar-Topology Full-Model PSO using
dynamically-adjusting learning rates (STLR)

This modification comes along the lines of earliark done in
[1]. It experiments with raising, lowering, and dynically
adjusting the social and cognitive learning ragesind e, in the
x-vector updating equation (refer to Eq. 3.1 and E8). Instead

Table4.2: Averagesand Standard Deviationsfor function
evaluations needed to get below the threshold (174400)

Algorithm PDT STLR OOBST GBST
Average 330.3 316.1 318.4 257.3
Standard Dev. 137.8 128.4 142.4 102.0

of usingg, andg, by themselves, each are added to an adjusting 4.2 Results of Second Test Suite: Toothpaste

ratio r;, as seen in Eq. 3.5. Ratipis computed by dividing the
current number of function evaluations so fahy the maximum
number of function evaluations allowead, then multiplying that
quantity by, (Eg. 3.6), or by, (Eqg. 3.7).

V=V, (g +1) U 0D [(p - x )+

Eq. 3.5
(¢, +1,) W (01 fpy, - %)
r, = (f/m)0Og, Eq. 3.6
r, =(f/m)lg, Eq. 3.7

Experiments are done witly andg, ranging from 1.0 to 3.0, as
well as subtracting; instead of adding it to the corresponding
This means that the learning rate starts at acodati value and
then either increases as the algorithm progressegecreases as
the algorithm progresses. Furthermore, this lehddearning rate
to either double by the end of the algorithm, drtged by the end
of the algorithm. The best results are achievedrwte and 2
are set between 1.7 and 2.0, with 1.8 along witlitiah to ¢, and
¢y, Yielding the most successful results.

3.3.4 Gaussian-based Sar-Topology Full-Model PSO
along with the Constriction Coefficient (GBST)

In GBST, the uniform variates sampled in the vdjoeiquation
are replaced by Gaussian variates. The effecthigfniethod are
further detailed in Section 5.

4. RESULTS

All 32 algorithms are tested under the client maeddest suite,
however, only the four best performing algorithms also tested
under the secondary test suite. For the brevithisf paper, only
the results for the best performing algorithmsraported.

4.1 Reaults of Client-Mandated Test Suite:

Textbooks

Among the PSOs considered in this paper, GBST Iglear
performed the best. In terms of success rateurppassed the
second best PSO by nearly 7 percentage pointsosmsh table
4.1. Results also reveal that GBST achieved anageebest
fitness of 174068, which is 0.1% better than thiathe second
best performing algorithm. Finally, it required 10&%ver function
evaluations than its closest competitor as showiahle 4.2.
These outcomes are explained by GBST's appropbiakence of
selection pressure and variation. Because the lbeation ever
found by the PSO serves as a focus for the entieens, the star
topology guides GBST quickly toward a solution. Utse of the
Gaussian distribution in evolving particle velogithowever,
provides for an expansive search of the fithesddeape.

Table4.1: Success Rates

Algorithm PDT STLR OOBST GBST

Success Rate 70.0% 80.09 76.7% 86.7%

Again, GBST performed the best. terms of success rate, it beat
the second best PSO by 20 percentage points amnshovable
4.3. Further results of this test suite also shdwat tGBST
achieved an average best fithess of 23806803, ah8@&b less
than that of the second best performing algorithnalso called
for 22.9% fewer function evaluations than its ckiseompetitor
as shown in table 4.4. The explanation for theassits mirrors
that of the results associated with test suite 1.

Table4.3: Success Rates

Algorithm PDT STLR OOBST GBST

Success Rate 16.7% 70.09 53.3% 90.0%

Table4.4: Averagesand Standard Deviations for function
evaluations needed to get below the threshold (24200000)

Algorithm PDT STLR OOBST GBST
Average 451.3 376.5 402.4 290.1]
Standard Dev. 113.3 130.1 107.6 99.1

4.3 Comparison of Results

Fig. 4.1 shows that while the success rates vanigaoportional
distance, the algorithms performed relative to eattier. In both
test suites GBST performed the best with STLR, ODB&hd
PDT following. This correlation is also seen foetaverage best
fitness and the average number of function evalunatiFig. 4.2
depicts the association between the average nuofbiemction
evaluations for the two test suites.

Success Rate by Algorithm and Problem
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STLR PDT OOBST GBST
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Figure 4.1: Success Rate

There is one case in which the algorithms ranledtffitly and that
is on the average best fithess between STLR and SOGi#own
in Fig. 4.2. It is speculated that this discrepaixydue to the
nature of OOBST and its high risk of “fly-overs” améng it will
bypass any good solution. With a larger search espacthe
toothpaste test suite, it runs a smaller chandlyiofy over a good
solution.



Average Function Evaluations by Algorithm and
Problem

500+
4501
400+
3501
300+
250
200+
150+
100
50
04

@ Textbook
Problem

B Toothpaste
Problem

Avarage Functlen Evaluatleons

STLR PDT

OOBST GBST
Algorithm

Figure 4.2: Average Function Evaluations
(Lower isBetter)

5. DISCUSSION

A single, universally-best EC does not exist. Tieisearch loudly
echoes and supports this sentiment. Several digwifrom each
of the EC paradigms performed well on this problé&#s and
EDAs, for example, came within 10 percentage poifithe best
algorithms. For this particular problem, howeve§@% proved
most adept. Their use of social information prodidan

evolutionary advantage that proved imperative tdutsm

discovery within the context of the supply chainnagement
problem. In Kennedy and Eberhart’s original papeiPSOs [9],
the authors observed that particles which “overshturations

associated with best known fitness values are resple for the
greatest improvements in the swarm’s global fitnesses. That
is, particles with high velocity discover new arettbr regions of
the fitness landscape more often than slow moviagigbes.

These particles, however, also benefit the pomrally “micro-

exploring” known regions for optima. This model B8O search
is so germane to the author’'s conception of thetesyy that they
attempted to manually stimulate the evolution ofplerers” and
“settlers”. This approach seems to lend itself welthe Multiple

Retailer Supply Chain Management Problem.

The use of Gaussian variates in the adaptation asficfes’
velocity vectors provides greater separation ampadicles. In
the canonical swarm [1], the source of randomngss tiniform
distribution on the interval [0,1). Thus, from a podation
perspective, velocities are not biased toward largamall values.
In contrast, 66% of Gaussian variates have maggsdtdidat lie in
this interval. These latter variates, however,aased toward the
origin — a characteristic affecting the emergente'settlers”.
Given the infinite tails of Gaussian distributicsgme velocities
are randomized by exceptionally large values. Tlatiges
corresponding to such variates comprise the “erpdr This
division of particles is appropriate to this prahl®ecause of the
specific nature of the fitness landscape. Whilehhjgarticle
velocity has been associated with poor performaimcether
contexts [1], it is quite beneficial in cases whemima exist
along search space boundaries. Thus, GBST “exploggrickly
delineate particular bounds as “good” regions aftkich GBST
“settlers” locate the best boundary locations. Ausebetween
these two groups is achieved via the global topoldis global
influence, in fact, explains the high performandesach of our
best performing algorithms. The benefits of usingglabal
topology have been well documented [1]. The faat BDT relies

only partially on global information explain whyishalgorithm
performed the worst among our best algorithms. SpeRormed
better than OOBST because its use of dynamicalyeasing
learning rates accelerated particles. As with GB®RIE property
leads to early boundary exploration. STLR, howevacks a
second category of particle to micro-explore newigcovered
regions. A lack of diversity, therefore, lends oatile to the
observed inferiority of this algorithm to OOBST.

6. CONCLUSION AND FUTURE WORK

In this study, standard techniques from severalp@@digms as
well as problem-tailored modifications are appltedan issue of
tremendous economic and theoretic value: The MaltiRetailer
Supply Chain Management Problem. Among the ECsidered,

it is learned that PSOs provide the best high perdoce solution
for this particular case. Since PSOs are highlpmeterized, they
provide many opportunities for future research. Esample,
additional population sizes can be considered.eftstof using
Full Models, each PSO can be adapted to make use @&ocial,
Selfless, and Cognitive models as described in [Hfferent

neighborhood size can be utilized. The applicatbriEvolution

Strategies to this problem could provide furthesights. Finally,

the problem itself could be extended to model doidit features
of the real world that have an impact on commemtablesaling.
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