
Optimization of the Multiple Retailer Supply Chain
Management Problem

Caio Soares
Dept. of Comp. Sci. & Soft. Eng.

3137 Shelby Center
Auburn University, AL 36849-5347

(334) 844-6333
soarecv@auburn.edu

Jared Phillips

Dept. of Comp. Sci. & Soft. Eng.
Auburn University, AL 36849-5347

philljr@auburn.edu

Gerry Dozier
Dept. of Computer Science

North Carolina A&T State University
Greensboro, NC 27411
(336) 334-7245 ext. 467
gvdozier@ncat.edu

Katie Nobles

Dept. of Comp. Sci. & Soft. Eng.
Auburn University, AL 36849-5347

noblekl@auburn.edu

Emmett Lodree
Dept. of Industrial & Systems Eng.

3312 Shelby Center
 Auburn University, AL 36849-5346

(334) 844-1433
lodreej@eng.auburn.edu

Yong won Park

Dept. of Comp. Sci. & Soft. Eng.
Auburn University, AL 36849-5347

parkyon@auburn.edu

ABSTRACT
With stock surpluses and shortages representing one of the
greatest elements of risk to wholesalers, a solution to the multi-
retailer supply chain management problem would result in
tremendous economic benefits. In this problem, a single
wholesaler with multiple retailer customers must find an optimal
balance of quantities ordered from suppliers and acceptable lead
time costs, while taking into account limiting factors such as the
time each retailer will wait for a backorder. The following four
evolutionary computations (EC) are utilized to find a solution:
evolutionary programming (EP), genetic algorithms (GA), particle
swarm optimizers (PSO), and estimation of distribution
algorithms (EDA). In addition, problem-specific modifications to
each are created. Of the 32 attempted algorithms, the following
proved to be best with respect to the client-mandated test-suite:
Probabilistic Dual-Topology Full-Model PSO, Star-Topology
Full-Model PSO using dynamically-adjusting learning rates, Out-
of-the-Box Star-Topology Full-Model PSO, and a Gaussian-based
Star-Topology Full-Model PSO with the Constriction Coefficient.
A secondary test-suite was also developed to test the effectiveness
of the best algorithms on the problem. With respect to the client-
mandated and the developed test suite’s fitness threshold and
maximum number of function evaluations, the best algorithm had
an 87% and 90% success rate, respectively. Considering the
flexibility and high performance of the solution and the generality
of the problem, these results represent a significant contribution to
commercial wholesaling.

Categories and Subject Descriptors
D.3.3 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search.

General Terms
Algorithms and Performance.

1. INTRODUCTION
Regarded as a relatively new field, Evolutionary Computation
(EC) finds its earliest manifestations in the 1950’s through the
work of Friedberg, Bremermann, and Box, among many others.
Their EC contributions ranged from work in automatic
programming (Friedberg), numerical optimization problems
(Bremermann), and industrial analysis and design experiments.
Due to considerable skepticism, however, it was not until the mid-
1960s that we find the basis for what we today consider EC.
During this time, the foundations for EC were laid by Lawrence
Fogel (Evolutionary Programming – EP), John Holland (Genetic
Algorithms – GA), and the combined work of Bienert,
Rechenberg, and Schwefel (Evolutionary Strategies - ES) [5].
Emerging from these three principle roots, a plethora of problem-
solving methodologies have entered into the EC canon. Among
the newer techniques, Estimation of Distribution Algorithms
(EDA) and Particle Swarm Optimizers (PSOs) have proven to be
particularly useful. Our research spans the scope of Evolutionary
Computation, but this paper focuses its main attention on the best
performing ECs specific to this problem.

In the remainder of this section, a high-level introduction to each
of the techniques used in this research is provided. Next, Section
2 explains the Multiple Retailer Supply Chain System Problem in
detail along with a breakdown of two test suites used to assess
each EC. Sections 3 and 4 detail the implementations of the best
performing ECs and the results attainted, respectively. A
discussion then highlights these results in Section 5, followed by a
conclusion in Section 6. Finally, a list of references is provided in
Section 7. To represent the broad spectrum of EC, four techniques
are chosen in an attempt to solve this problem.

1.1 Evolutionary Programming
Early researchers in Artificial Intelligence were primarily focused
on heuristic methods and the simulation of neural networks in an
effort to model human intelligence rather than addressing the
practical goal of finding working solutions to problems [3]. With
the meaning of intelligence under consideration, EPs were devised
by Lawrence Fogel in order to evolve finite state machines to
predict events on the basis of former observations. Prediction was
then viewed as a crucial ingredient to intelligent behavior [6]. In
addition, EPs also proved useful as a stochastic optimization
technique for discovering the extrema of nonlinear functions.

1.2 Genetic Algorithms
Deriving from cellular automata research, GAs arose as a
theoretical interest point rather than solution to a real-world
problem. Popularized by John Holland and his colleagues, GAs
have traditionally employed crossover operators as their main
means of variation [7]. This use of non-uniform mutation provides
GA's with search capabilities that are less susceptible to the
premature convergence associated with more directed mutation
techniques. This very lack of direction, however, often limits GAs
in their ability to quickly converge to an optimal solution, which
often excludes their use in optimization problems. Perhaps the
most well-known EC, the GA is notable due its flexibility and
robustness.

1.3 Estimation of Distribution Algorithms
Selecting suitable parameter values for an EC can be an onerous
optimization problem in and of itself. Another problem of highly
parameterized ECs is the interaction of multiple parameter
settings. In an effort to eliminate these problems, EDAs were
devised so as to “predict movements of the population in the
search space” by calculating the distribution of the previous
population [10]. EDAs do not use the operators found in many
conventional forms of evolutionary computation, but instead
utilize correlation information among variables. In particular, each
new generation is sampled from a joint probability distribution
that approximates the discrete empirical distribution of selected
individuals in the previous population. This process enables
EDAs to capture the structure of variables of a problem. For these
reasons, EDAs can be a more efficient approach than other ECs
for some problems.

1.4 Particle Swarm Optimization
Particle Swarm Optimizers were devised and developed to
embody the fundamental concept that social sharing of
information provides an evolutionary advantage [9]. In early PSO
work, particles explored multi-dimensional, non-linear space
using a simple strategy, in which the velocity of a particle depends
solely on a cognition and a social factor. Many variations of PSO
have been developed to improve performance, and much effort
has been focused on finding optimal settings for various algorithm
parameters. The effectiveness of a PSO banks upon its use of
collective knowledge of the fitness landscape and its ability to
quickly explore the search space.

2. THE MULTIPLE RETAILER SUPPLY
CHAIN SYSTEM PROBLEM
2.1 Problem Overview
In order for a product to reach the customer, it must go through a
supplier, a wholesaler, and a retailer. The Retailer Supply Chain
problem arises when a wholesaler tries to efficiently provide for
its retailers and their customers while balancing total cost. In the
past, the quantities a wholesaler would supply to its retailers were
based on educated guessing and trial and error with simulation
models. The objective of the multiple retailer supply chain system
problem is to minimize the total cost for a wholesaler. Here, this is
attempted by using evolutionary computation. The total cost for a
wholesaler is calculated as the sum of the ordering costs, supply
costs, and holding (or storage) costs taken across all the retailers.
These are a function of the following variables:

• Number of retailers – R
• Ordering Cost of a single item – Co
• Item storage cost – CH

• Average number of items requested – qavg
• Std. deviation of number of items requested – qsd
• Quantity ordered by each retailer – Q
 (Note that Qmin is 0 whereas Qmax is the corresponding qavg

plus two times the corresponding qsd.)
• Maximum time retailer will wait for back order – M
• Minimum cost associated with back order lead time proposed

by supplier – Cmin
• Maximum cost associated with back order lead time

proposed by supplier – Cmax
• Acceptable lead time of the supplier for particular retailer – L
• Minimum viable lead time of the supplier for retailer – Lmin
• Maximum viable lead time of the supplier for retailer – Lmax
• Cost of lost sales in case retailer chooses to no longer do

business with supplier – CB,LS
• Actual number of items requested by the retailer – x

Although based on total cost, the client-specified fitness function
actually weighs the ordering cost more heavily than the other two
expenses. In particular, each fitness value is the sum of the total
ordering cost (OCost) and the average of the sums of holding
(HCost) and shortage (SCost) costs over all retailers R (Eq. 2.1).

∑
=

++=
R

k
kk SCostHCost

R
OCostFitness

1

)(
1 Eq. 2.1

The ordering cost is simply the product C0 and total quantity order
by all the retailers (Eq. 2.2).

∑
=

=
n

j
jo QCOCost

1

 Eq. 2.2

The holding cost is CH times the excess quantity ordered (Eq 2.3).

−= ∑ ∑
= =

n

j

n

j
jjH xQCHCost

1 1

0,max Eq. 2.3

The shortage cost is the sum of all individual shortage costs
associated with each retailer. An individual shortage cost is
maximum of 0, and CB,LS, which is defined in Eq. 2.4.

()

() ()2

maxmin
maxmin

minmax
,

1

)(

Qx
M

CL
Qx

M

L

CLL
LL

CC
QxC

LS

LSB

−⋅
⋅

+

 −⋅−⋅

+−⋅

−
−

⋅−=

Eq. 2.4
The supplier distributes excess items among retailers whose order
amount exceeds the supplier’s initial estimate. These parameters
are set to values in accordance with the client-specified test suite
in order to find the best performing algorithm. Also, a second test
suite is devised to further analyze the best performing algorithms.

2.2 Client-Specified Test Suite
In this primary test suite, the premise of a textbook supplier is
employed to determine the test suite parameter values. The fitness
threshold has been set at 174400 by the client. Thus, a wholesaler
supply configuration, represented as either a chromosome or
particle location, is considered a solution when the fitness maps to
a value less than 174400. Configurations mapped to smaller
values are said to be more fit than those that produce larger
values. In this test suite, R = 5, Co = 75, and CH = 10. Moreover,
Table 2.1 displays the initial values for the remaining variables.

Table 2.1 Client-Specified values

R# qavg qsd M Cmin Cmax Lmin Lmax CB,LS
1 375 45 14 200 700 2 11 825
2 565 85 5 375 1025 2 4 1477
3 725 75 7 325 985 2 7 1250
4 165 30 10 275 825 2 10 830
5 50 30 7 275 325 2 6 325

2.3 Secondary Test Suite
While the first test suite is applied to all 32 ECs, the secondary
test suite is applied only to the four best performing ECs. In
contrast, the secondary test suite draws upon the premise of a
toothpaste supplier. One of the reasons is that toothpaste is
vended by diversely-sized retailers ranging from “Mom and Pop”
stores to Super Wal-Marts. The uniform price across brands
brought on by the flat demand curve associated with toothpaste
allows for reasonably setting the item cost to a single, non-varying
value. The retailers in Table 2.2 are matched to the following:

1. Gas station close to supplier
2. Small store close to supplier
3. Grocery store far from supplier
4. Medium retail store close to supplier
5. Large retail store far from supplier

The fitness threshold for this particular test suite is set at
24200000. Don’t forget that algorithm configurations mapped to
smaller values are said to be more fit than those that produce
larger values. In this test suite, R = 5, Co = 10, and CH = 1. Also,
Table 2.2 displays the initial values for the remaining variables.

Table 2.2 Secondary Test Suite values

R# qavg qsd M Cmin Cmax Lmin Lmax CB,LS
1 10 6 8 26 35 1 8 40
2 29 15 6 24 50 1 7 116
3 84 34 5 32 65 1 6 336
4 247 74 3 21 88 1 3 988
5 734 147 2 28 80 1 4 2936

3. IMPLEMENTATION
Section 3 begins by outlining the implementation of the ECs
employed on this particular problem, followed by a more
thorough description of the implementation of PSOs, the top
performing EC, and then the implementation of the four best
performing algorithms. Note: The list of parameter values
mentioned in each subsection is only fully tested on the out-of-
the-box algorithms, while each modification tests simply the best
parameter set combination from each out-of-the-box algorithm.

3.1 ECs Overview
3.1.1 EP
Four different EP algorithms are implemented in an attempt to
solve the Supply-Chain Management Problem:

1. Standard EP (SEP)
2. Continuous Standard EP (CSEP)
3. Meta EP (MEP)
4. Continuous Meta EP (CMEP)

In an effort to improve performance, a modified algorithm for
each EP is created. Next, are the characteristics employed in each.
Selection strategy: (µ + λ) for all EPs (λ = 1 for CSEP and CMEP
and λ = µ for SEP and MEP). Also, competition-determined
subjective fitness for population size ≥ 10 for SEP and MEP.
Parent selection: random parent selection is used for CSEP and
CMEP, while every individual in the population servers as a
parent in the remaining two EPs.

Variation: mutation with Gaussian variation is used by all EPs.
Moreover, MEP and CMEP utilize strategy parameters η and σ,
which are evolved throughout the algorithm, to adapt the amount
of mutation to best fit the particular problem.
Parameter Values:

µ: [5, 9, 10, 50, 100]
C: [100, 200, 500, 550, 1000, 2000, 3000, 3500, 4000, 4500,
5000, 6000, 10000, 13000, 20000, 50000, 100000, 200000,
500000, 1000000]
of competitors: [1, 7, 2/3µ]
η :[0.1, 0.2, 0.3, 0.4]
σ: [10%, 30%, 50%].

The C value is used as a divisor to the square root of the parent’s
fitness in SEP and CSEP because the mutation originally yielded
by the square root of the parent’s fitness almost always landed
outside the allele bounds. Note that the aforementioned
parameters do not apply to all EPs, but are used where applicable.

3.1.2 GA
This research showed that GAs can efficiently search for a
solution to the Supply Chain Management System Problem. Four
different genetic algorithms are implemented:

1. Binary-Coded Elitist Generational GA (BCEG)
2. Real-Coded Elitist Generational GA (RCEG)
3. Binary-Coded Steady State GA (BCSS)
4. Real-Coded Steady State GA (RCSS)

As with the EPs, four modifications are devised in an attempt to
achieve superior performance. The characteristics of each GA are
as follows.
Selection strategy: Generational Strategy is used with BCEG and
RCEG, while always keeping the best found individual (elitism).
A Steady State Strategy is used for BCSS and RCSS.
Parent Selection: Binary Tournament selection is used for GAs.
Variation: Uniform Crossover is used for the two Binary-Coded
GAs, while BLX-0.5 is used for the Real-Coded algorithms.
Parameter Values:

µ: [5, 10, 20, 50, 100]
BMR: [1%, 3%, 5%, 7%, 10%]
Resolution: 20 bit gene representation (Binary-Coded)
σ: [1%, 3%, 5%, 7%, 9%, 10%, 30%, 50%, 70%, 90%]

3.1.3 EDA
Although numerous EDA variants exist, this research is limited to
the following four:

1. Binary-Coded EDA (BCE)
2. Real-Coded EDA (RCE)
3. Elitist Binary-Coded EDA (EBCE)
4. Elitist Real-Coded EDA (ERCE)

Once again, four more variations are created. The main aspects of
the four out-of-the-box algorithms are listed below:
Selection strategy: A Generational Strategy is used for all EDAs,
while EBCE and ERCE also always keep the best found
individual (elitism).
Parent Selection: The number of parents selected (µ) is set at 50%
of the population size.
Variation: A probability distribution function is used to create
offspring in Binary-Coded EDAs, whereas, a probability density
function is used for their Real-Coded counterparts.
Parameter Values: λ: [6, 10, 20, 30, 40, 50, 100]

3.1.4 PSO
This work implements four canonical PSO algorithms:

1. Ring-Topology Full-Model PSO (OOBRT)

2. Star-Topology Full-Model PSO (OOBST)
3. Ring-Topology Full-Model PSO (with Constriction

Coefficient) (OOBRTK)
4. Star-Topology Full-Model PSO (with Constriction

Coefficient) (OOBSTK)
Each of these satisfies the Full-Model definition by having
positive-valued learning rates. More specifically, the learning
rates are set to 2.05 to comply with the requirements of Clerc’s
Constriction Coefficient K [2]. The other influential
characteristics are as follows:
Social Influence: Both Ring-Topology algorithms utilize a
neighborhood best location in calculating their social component,
whereas, both Star-Topology algorithms use the global best
location in computing the social component.
Variation: Velocity vectors supply PSOs with variation, and are
initialized to 0.
Parameter Values:

µ: [10, 20, 30, 40, 50, 100, 125]
Vmax = Xmax

Vmin = -Xmin

3.2 PSO Overview
Each technique made use of standard equations found in [1]. In
Eq. 3.1, a particle’s velocity Vid is updated using the particle’s
cognition factor Pid and social factor Pgd. The cognition factor is
the best location a particle has ever occupied, whereas the social
factor is the best location ever occupied by one of its neighbors.
Each component Xid of the particle’s current location is updated
using Eq. 3.2. This update occurs asynchronously; in other words,
the neighborhood best or global best location (depending on
algorithm) is updated after every one of the x-vectors updates.

)](()2

)(()1[

idgd

idididid

xprand

xprandVV

−⋅⋅+
−⋅⋅+=

ϕ
ϕ

 Eq. 3.1

 iii vxx += Eq. 3.2
The learning rate parameters φ1 and φ2 are each set to positive
values in accordance with the Full-Model specification. The PSOs
use various methods for controlling the magnitude of the velocity.
Moreover, a v-vector’s component is set to 0 when the
corresponding x-vector component goes outside one of its
boundaries. Finally, all algorithms utilize asynchronous updates.
That is, topological information is updated during the course of
each iteration, rather than in between iterations.

3.2.1 PSO Ring
As with all PSOs, the ring-based Full-Model PSO searches a
fitness landscape using a collection of particles, each of which
encapsulates vectors representing its current location, best found
location, velocity, and the fitness values corresponding to the two
locations [9]. The trajectory of any given particle over time is
determined by three factors: the location of its best fitness value, a
certain degree of (pseudo) random behavior, and the influence of
their neighbors. A neighborhood of a particle P is a predefined
grouping of particles containing P, such that P “knows” the best
location ever occupied by every particle in the set. Such
knowledge can be limited to neighborhoods of a specific size. In
each ring-based PSO, these neighborhoods are overlapping, fixed-
length arcs of a predefined and static circle formed by the particles
(hence the name ring topology). In this implementation, each
neighborhood consists of three particles. Each ring-based PSO
first initializes its particle population. Recall that each particle i
contains three vectors xi, pi, and vi that respectively denote the

particle’s current location, best location, and velocity. Initially,
the components of xi are randomly generated values that lie within
problem specific bounds. Vector pi is set equal to xi, and vi is
initialized to the zero vector. The current location vectors are then
evaluated using the fitness function, and the iterative process
begins. During every iteration, each particle changes its location
using the update equations (Eq. 3.1 and Eq. 3.2).

3.2.2 PSO Star
A Star Topology PSO differs from a Ring Topology PSO very
little. Using a star topology means that every particle is connected
to every other particle in such a way that it knows where the best
found particle is, no matter how far. This knowledge leads to its
second and final difference: how the particle is updated. Again,
the updating formula used is very similar to ring topology, with
one slight difference, the use of a global best solution, instead of a
neighborhood best solution. When computing the social
component of the equation, the global best solution is used
instead of the neighborhood best as in a ring topology.

3.2.3 Constriction Coefficient (K)
[2] defines a constriction coefficient, K, which is designed to limit
the velocity vector’s magnitude. The definition of K is provided in
Eq. 3.3 and utilized to compute the velocity in Eq. 3.4.

ϕϕϕ 42

2
2 −−−

=K Eq. 3.3

)](()2

)(()1[

idgd

idididid

xprand

xprandVKV

−⋅⋅+
−⋅⋅+=

ϕ
ϕ

 Eq. 3.4

3.3 Best Performers
Among all algorithms implemented in the client-mandated test
suite, the best performing four are three PSO modifications and
one out-of-the-box PSO. The implementation of each of these
four algorithms is outlined in the following subsections.

3.3.1 Probabilistic Dual-Topology Full-Model PSO
(PDT)
[4] concludes that using small neighborhoods prevents premature
convergence, whereas the use of global neighborhoods increases
convergence speed. Since both of these properties are desirable,
PDT incorporates both small and large neighborhoods. In
particular, PDT tracks the best locations in three-particle
neighborhoods and a global neighborhood. When a particle
updates, it has a 100 * λ % chance of using the neighborhood best
location pid shown in Eq. 3.1. It has a 1-100 * λ % chance of using
the global best individual in place of the neighborhood best. The
value of λ decreases with each update iteration through the
population according to the equation

)1ln(1

3

++
=

t
λ

where t is the iteration number initially equal to zero. Thus, this
modification encourages a high level of variation initially, but
gradually focuses the search as time progresses. In this manner, it
continues to explore a large part of the fitness landscape but has
faster convergence than with the out-of-the-box Ring-Topology
Full-Model PSO.

3.3.2 Star-Topology Full-Model PSO (OOBST)
This is the same Star-Topology Full-Model PSO, described in [1].

3.3.3 Star-Topology Full-Model PSO using
dynamically-adjusting learning rates (STLR)
This modification comes along the lines of earlier work done in
[1]. It experiments with raising, lowering, and dynamically
adjusting the social and cognitive learning rates φ1 and φ2 in the
x-vector updating equation (refer to Eq. 3.1 and Eq. 3.2). Instead
of using φ1 and φ2 by themselves, each are added to an adjusting
ratio ri, as seen in Eq. 3.5. Ratio ri is computed by dividing the
current number of function evaluations so far, f, by the maximum
number of function evaluations allowed, m, then multiplying that
quantity by φ1 (Eq. 3.6), or by φ2 (Eq. 3.7).

()
()ii

iiii

xpgUr

xpUrvv

−⋅⋅+
+−⋅⋅++=

)1,0()(

)1,0()(

22

11

ϕ
ϕ

 Eq. 3.5

11)/(ϕ∗= mfr Eq. 3.6

22)/(ϕ∗= mfr Eq. 3.7

Experiments are done with φ1 and φ2 ranging from 1.0 to 3.0, as
well as subtracting ri instead of adding it to the corresponding φ.
This means that the learning rate starts at a particular value and
then either increases as the algorithm progresses, or decreases as
the algorithm progresses. Furthermore, this leads the learning rate
to either double by the end of the algorithm, or get to 0 by the end
of the algorithm. The best results are achieved when φ1 and φ2
are set between 1.7 and 2.0, with 1.8 along with addition to φ1 and
φ2, yielding the most successful results.

3.3.4 Gaussian-based Star-Topology Full-Model PSO
along with the Constriction Coefficient (GBST)
In GBST, the uniform variates sampled in the velocity equation
are replaced by Gaussian variates. The effects of this method are
further detailed in Section 5.

4. RESULTS
All 32 algorithms are tested under the client mandated test suite,
however, only the four best performing algorithms are also tested
under the secondary test suite. For the brevity of this paper, only
the results for the best performing algorithms are reported.

4.1 Results of Client-Mandated Test Suite:
Textbooks
Among the PSOs considered in this paper, GBST clearly
performed the best. In terms of success rate, it surpassed the
second best PSO by nearly 7 percentage points as shown in table
4.1. Results also reveal that GBST achieved an average best
fitness of 174068, which is 0.1% better than that of the second
best performing algorithm. Finally, it required 10% fewer function
evaluations than its closest competitor as shown in Table 4.2.
These outcomes are explained by GBST’s appropriate balance of
selection pressure and variation. Because the best location ever
found by the PSO serves as a focus for the entire swarm, the star
topology guides GBST quickly toward a solution. Its use of the
Gaussian distribution in evolving particle velocity, however,
provides for an expansive search of the fitness landscape.

Table 4.1: Success Rates

Algorithm PDT STLR OOBST GBST
Success Rate 70.0% 80.0% 76.7% 86.7%

Table 4.2: Averages and Standard Deviations for function
evaluations needed to get below the threshold (174400)

Algorithm PDT STLR OOBST GBST
Average 330.3 316.1 318.4 257.3

Standard Dev. 137.8 128.4 142.4 102.0

4.2 Results of Second Test Suite: Toothpaste
Again, GBST performed the best. In terms of success rate, it beat
the second best PSO by 20 percentage points as shown in Table
4.3. Further results of this test suite also show that GBST
achieved an average best fitness of 23806803, about 1.9% less
than that of the second best performing algorithm. It also called
for 22.9% fewer function evaluations than its closest competitor
as shown in table 4.4. The explanation for these statistics mirrors
that of the results associated with test suite 1.

Table 4.3: Success Rates

Algorithm PDT STLR OOBST GBST
Success Rate 16.7% 70.0% 53.3% 90.0%

Table 4.4: Averages and Standard Deviations for function
evaluations needed to get below the threshold (24200000)

Algorithm PDT STLR OOBST GBST
Average 451.3 376.5 402.4 290.1

Standard Dev. 113.3 130.1 107.6 99.1

4.3 Comparison of Results
Fig. 4.1 shows that while the success rates varied in proportional
distance, the algorithms performed relative to each other. In both
test suites GBST performed the best with STLR, OOBST, and
PDT following. This correlation is also seen for the average best
fitness and the average number of function evaluations. Fig. 4.2
depicts the association between the average number of function
evaluations for the two test suites.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

S
uc

ce
ss

 R
at

e

STLR PDT OOBST GBST

Algorithm

Success Rate by Algorithm and Problem

Textbook
Problem

Toothpaste
Problem

Figure 4.1: Success Rate

There is one case in which the algorithms rank differently and that
is on the average best fitness between STLR and OOBST shown
in Fig. 4.2. It is speculated that this discrepancy is due to the
nature of OOBST and its high risk of “fly-overs” meaning it will
bypass any good solution. With a larger search space in the
toothpaste test suite, it runs a smaller chance of flying over a good
solution.

Figure 4.2: Average Function Evaluations

(Lower is Better)

5. DISCUSSION
A single, universally-best EC does not exist. This research loudly
echoes and supports this sentiment. Several algorithms from each
of the EC paradigms performed well on this problem. GAs and
EDAs, for example, came within 10 percentage points of the best
algorithms. For this particular problem, however, PSOs proved
most adept. Their use of social information provided an
evolutionary advantage that proved imperative to solution
discovery within the context of the supply chain management
problem. In Kennedy and Eberhart’s original paper on PSOs [9],
the authors observed that particles which “overshoot” locations
associated with best known fitness values are responsible for the
greatest improvements in the swarm’s global fitness values. That
is, particles with high velocity discover new and better regions of
the fitness landscape more often than slow moving particles.
These particles, however, also benefit the population by “micro-
exploring” known regions for optima. This model of PSO search
is so germane to the author’s conception of the strategy that they
attempted to manually stimulate the evolution of “explorers” and
“settlers”. This approach seems to lend itself well to the Multiple
Retailer Supply Chain Management Problem.

The use of Gaussian variates in the adaptation of particles’
velocity vectors provides greater separation among particles. In
the canonical swarm [1], the source of randomness is a uniform
distribution on the interval [0,1). Thus, from a population
perspective, velocities are not biased toward large or small values.
In contrast, 66% of Gaussian variates have magnitudes that lie in
this interval. These latter variates, however, are biased toward the
origin – a characteristic affecting the emergence of “settlers”.
Given the infinite tails of Gaussian distribution, some velocities
are randomized by exceptionally large values. The particles
corresponding to such variates comprise the “explorers”. This
division of particles is appropriate to this problem because of the
specific nature of the fitness landscape. While high particle
velocity has been associated with poor performance in other
contexts [1], it is quite beneficial in cases where optima exist
along search space boundaries. Thus, GBST “explorers” quickly
delineate particular bounds as “good” regions after which GBST
“settlers” locate the best boundary locations. A nexus between
these two groups is achieved via the global topology. This global
influence, in fact, explains the high performance of each of our
best performing algorithms. The benefits of using a global
topology have been well documented [1]. The fact that PDT relies

only partially on global information explain why this algorithm
performed the worst among our best algorithms. STLR performed
better than OOBST because its use of dynamically increasing
learning rates accelerated particles. As with GBST, this property
leads to early boundary exploration. STLR, however, lacks a
second category of particle to micro-explore newly discovered
regions. A lack of diversity, therefore, lends rationale to the
observed inferiority of this algorithm to OOBST.

6. CONCLUSION AND FUTURE WORK
In this study, standard techniques from several EC paradigms as
well as problem-tailored modifications are applied to an issue of
tremendous economic and theoretic value: The Multiple Retailer
Supply Chain Management Problem. Among the ECs considered,
it is learned that PSOs provide the best high performance solution
for this particular case. Since PSOs are highly parameterized, they
provide many opportunities for future research. For example,
additional population sizes can be considered. Instead of using
Full Models, each PSO can be adapted to make use of the Social,
Selfless, and Cognitive models as described in [8]. Different
neighborhood size can be utilized. The application of Evolution
Strategies to this problem could provide further insights. Finally,
the problem itself could be extended to model additional features
of the real world that have an impact on commercial wholesaling.

7. REFERENCES
[1] Carlisle, A. and Dozier, G. 2001. An Off-The-Shelf PSO. In

Proceedings of the 2001 Workshop on Particle Swarm
Optimization, pp. 1-6, Indianapolis, IN.

[2] Clerc, M. and Kennedy, J. 2002. The Particle Swarm –
Explosion Stability and Convergence in a Multidimensional
Complex Space. IEEE Transactions on Evolutionary
Computation, Volume 6, #1.

[3] DeJong, K. & Spears, W. 1993. On the State of Evolutionary
Computation. In Proceedings of the Fifth ICGA, 618-623.
Kaufmann, San Mateo, CA.

[4] Eberhart, R. and Kennedy J. 1995. A New Optimizer Using
Particle Swarm Theory, Proc. Sixth International Symposium
on Micro Machine and Human Science (Nagoya, Japan),
IEEE Service Center, Piscataway, NJ, 39-43.

[5] Fogel, D. B. 2000. Evolutionary Computation: Basic
Algorithms and Operators (1st ed.). Philadelphia Institute of
Physics Publishing, Bristol, PA.

[6] Fogel, D. and Chellapilla, K. 1998. Revisiting Evolutionary
Programming. SPIE Aerosense98, Applications and Science
of Computational Intelligence. pp.2-11, Orlando, FL.

[7] Goldberg, D.E. 1989. Genetic Algorithms in Search,
Optimization & Machine Learning.

[8] Kennedy, J. 1997. The Particle Swarm: Social Adaptation of
Knowledge. In the Proceedings of the 1997 International
Conference on Evolutionary Computation, pp. 303-308,
IEEE Press.

[9] Kennedy, J. and Eberhart, R. 1995. Particle Swarm
Optimization. In the Proceedings of the 1995 IEEE
International Conference on Neural Networks. pp. 1942-
1948, IEEE Press.

[10] Lozano, J., Sagarna, R., and Larra~naga, P. 2005. Parallel
estimation of distribution algorithms. In P. Larra~naga and J.
A. Lozano, editors, Estimation of Distribution Algorithms. A
New Tool for Evolutionary Computation.

0

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 B
es

t F
itn

es
s

STLR PDT OOBST GBST

Algorithm

Average Function Evaluations by Algorithm and
Problem

Textbook
Problem

Toothpaste
Problem

