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ABSTRACT 
With stock surpluses and shortages representing one of the 
greatest elements of risk to wholesalers, a solution to the multi-
retailer supply chain management problem would result in 
tremendous economic benefits.  In this problem, a single 
wholesaler with multiple retailer customers must find an optimal 
balance of quantities ordered from suppliers and acceptable lead 
time costs, while taking into account limiting factors such as the 
time each retailer will wait for a backorder.  The following four 
evolutionary computations (EC) are utilized to find a solution: 
evolutionary programming (EP), genetic algorithms (GA), particle 
swarm optimizers (PSO), and estimation of distribution 
algorithms (EDA).  In addition, problem-specific modifications to 
each are created.  Of the 32 attempted algorithms, the following 
proved to be best with respect to the client-mandated test-suite:  
Probabilistic Dual-Topology Full-Model PSO, Star-Topology 
Full-Model PSO using dynamically-adjusting learning rates, Out-
of-the-Box Star-Topology Full-Model PSO, and a Gaussian-based 
Star-Topology Full-Model PSO with the Constriction Coefficient.  
A secondary test-suite was also developed to test the effectiveness 
of the best algorithms on the problem. With respect to the client-
mandated and the developed test suite’s fitness threshold and 
maximum number of function evaluations, the best algorithm had 
an 87% and 90% success rate, respectively. Considering the 
flexibility and high performance of the solution and the generality 
of the problem, these results represent a significant contribution to 
commercial wholesaling. 

Categories and Subject Descriptors 
D.3.3 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search. 

General Terms 
Algorithms and Performance.

1. INTRODUCTION 
Regarded as a relatively new field, Evolutionary Computation 
(EC) finds its earliest manifestations in the 1950’s through the 
work of Friedberg, Bremermann, and Box, among many others.  
Their EC contributions ranged from work in automatic 
programming (Friedberg), numerical optimization problems 
(Bremermann), and industrial analysis and design experiments.  
Due to considerable skepticism, however, it was not until the mid-
1960s that we find the basis for what we today consider EC.  
During this time, the foundations for EC were laid by Lawrence 
Fogel (Evolutionary Programming – EP), John Holland (Genetic 
Algorithms – GA), and the combined work of Bienert, 
Rechenberg, and Schwefel (Evolutionary Strategies - ES) [5].  
Emerging from these three principle roots, a plethora of problem-
solving methodologies have entered into the EC canon.  Among 
the newer techniques, Estimation of Distribution Algorithms 
(EDA) and Particle Swarm Optimizers (PSOs) have proven to be 
particularly useful.  Our research spans the scope of Evolutionary 
Computation, but this paper focuses its main attention on the best 
performing ECs specific to this problem.  
 
In the remainder of this section, a high-level introduction to each 
of the techniques used in this research is provided.  Next, Section 
2 explains the Multiple Retailer Supply Chain System Problem in 
detail along with a breakdown of two test suites used to assess 
each EC.  Sections 3 and 4 detail the implementations of the best 
performing ECs and the results attainted, respectively.  A 
discussion then highlights these results in Section 5, followed by a 
conclusion in Section 6.  Finally, a list of references is provided in 
Section 7. To represent the broad spectrum of EC, four techniques 
are chosen in an attempt to solve this problem. 

1.1 Evolutionary Programming 
Early researchers in Artificial Intelligence were primarily focused 
on heuristic methods and the simulation of neural networks in an 
effort to model human intelligence rather than addressing the 
practical goal of finding working solutions to problems [3]. With 
the meaning of intelligence under consideration, EPs were devised 
by Lawrence Fogel in order to evolve finite state machines to 
predict events on the basis of former observations.  Prediction was 
then viewed as a crucial ingredient to intelligent behavior [6].  In 
addition, EPs also proved useful as a stochastic optimization 
technique for discovering the extrema of nonlinear functions. 



1.2 Genetic Algorithms 
Deriving from cellular automata research, GAs arose as a 
theoretical interest point rather than solution to a real-world 
problem. Popularized by John Holland and his colleagues, GAs 
have traditionally employed crossover operators as their main 
means of variation [7]. This use of non-uniform mutation provides 
GA's with search capabilities that are less susceptible to the 
premature convergence associated with more directed mutation 
techniques. This very lack of direction, however, often limits GAs 
in their ability to quickly converge to an optimal solution, which 
often excludes their use in optimization problems. Perhaps the 
most well-known EC, the GA is notable due its flexibility and 
robustness. 

1.3 Estimation of Distribution Algorithms 
Selecting suitable parameter values for an EC can be an onerous 
optimization problem in and of itself. Another problem of highly 
parameterized ECs is the interaction of multiple parameter 
settings. In an effort to eliminate these problems, EDAs were 
devised so as to “predict movements of the population in the 
search space” by calculating the distribution of the previous 
population [10]. EDAs do not use the operators found in many 
conventional forms of evolutionary computation, but instead 
utilize correlation information among variables. In particular, each 
new generation is sampled from a joint probability distribution 
that approximates the discrete empirical distribution of selected 
individuals in the previous population. This process enables 
EDAs to capture the structure of variables of a problem. For these 
reasons, EDAs can be a more efficient approach than other ECs 
for some problems.  

1.4 Particle Swarm Optimization 
Particle Swarm Optimizers were devised and developed to 
embody the fundamental concept that social sharing of 
information provides an evolutionary advantage [9]. In early PSO 
work, particles explored multi-dimensional, non-linear space 
using a simple strategy, in which the velocity of a particle depends 
solely on a cognition and a social factor. Many variations of PSO 
have been developed to improve performance, and much effort 
has been focused on finding optimal settings for various algorithm 
parameters. The effectiveness of a PSO banks upon its use of 
collective knowledge of the fitness landscape and its ability to 
quickly explore the search space.  

2. THE MULTIPLE RETAILER SUPPLY 
CHAIN SYSTEM PROBLEM 
2.1 Problem Overview 
In order for a product to reach the customer, it must go through a 
supplier, a wholesaler, and a retailer. The Retailer Supply Chain 
problem arises when a wholesaler tries to efficiently provide for 
its retailers and their customers while balancing total cost. In the 
past, the quantities a wholesaler would supply to its retailers were 
based on educated guessing and trial and error with simulation 
models. The objective of the multiple retailer supply chain system 
problem is to minimize the total cost for a wholesaler. Here, this is 
attempted by using evolutionary computation. The total cost for a 
wholesaler is calculated as the sum of the ordering costs, supply 
costs, and holding (or storage) costs taken across all the retailers.  
These are a function of the following variables: 

• Number of retailers – R 
• Ordering Cost of a single item – Co 
• Item storage cost – CH 

• Average number of items requested – qavg 
• Std. deviation of number of items requested – qsd  
• Quantity ordered by each retailer – Q 
 (Note that Qmin is 0 whereas Qmax is the corresponding qavg 

plus two times the corresponding qsd.) 
• Maximum time retailer will wait for back order – M 
• Minimum cost associated with back order lead time proposed 

by supplier – Cmin  
• Maximum cost associated with back order lead time 

proposed by supplier – Cmax 
• Acceptable lead time of the supplier for particular retailer – L  
• Minimum viable lead time of the supplier for retailer – Lmin  
• Maximum viable lead time of the supplier for retailer – Lmax 
• Cost of lost sales in case retailer chooses to no longer do 

business with supplier – CB,LS 
• Actual number of items requested by the retailer – x  

Although based on total cost, the client-specified fitness function 
actually weighs the ordering cost more heavily than the other two 
expenses. In particular, each fitness value is the sum of the total 
ordering cost (OCost) and the average of the sums of holding 
(HCost) and shortage (SCost) costs over all retailers R (Eq. 2.1). 
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The ordering cost is simply the product C0 and total quantity order 
by all the retailers (Eq. 2.2).   
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The holding cost is CH times the excess quantity ordered (Eq 2.3). 
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The shortage cost is the sum of all individual shortage costs 
associated with each retailer. An individual shortage cost is 
maximum of 0, and CB,LS, which is defined in Eq. 2.4. 
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Eq. 2.4 
The supplier distributes excess items among retailers whose order 
amount exceeds the supplier’s initial estimate. These parameters 
are set to values in accordance with the client-specified test suite 
in order to find the best performing algorithm. Also, a second test 
suite is devised to further analyze the best performing algorithms.  

2.2 Client-Specified Test Suite 
In this primary test suite, the premise of a textbook supplier is 
employed to determine the test suite parameter values. The fitness 
threshold has been set at 174400 by the client. Thus, a wholesaler 
supply configuration, represented as either a chromosome or 
particle location, is considered a solution when the fitness maps to 
a value less than 174400. Configurations mapped to smaller 
values are said to be more fit than those that produce larger 
values. In this test suite, R = 5, Co = 75, and CH = 10. Moreover, 
Table 2.1 displays the initial values for the remaining variables.  



Table 2.1 Client-Specified values 

R# qavg qsd M Cmin Cmax Lmin Lmax CB,LS 
1 375 45 14 200 700 2 11 825 
2 565 85 5 375 1025 2 4 1477 
3 725 75 7 325 985 2 7 1250 
4 165 30 10 275 825 2 10 830 
5 50 30 7 275 325 2 6 325 

2.3 Secondary Test Suite 
While the first test suite is applied to all 32 ECs, the secondary 
test suite is applied only to the four best performing ECs. In 
contrast, the secondary test suite draws upon the premise of a 
toothpaste supplier. One of the reasons is that toothpaste is 
vended by diversely-sized retailers ranging from “Mom and Pop” 
stores to Super Wal-Marts. The uniform price across brands 
brought on by the flat demand curve associated with toothpaste 
allows for reasonably setting the item cost to a single, non-varying 
value.  The retailers in Table 2.2 are matched to the following: 

1. Gas station close to supplier 
2. Small store close to supplier 
3. Grocery store far from supplier 
4. Medium retail store close to supplier 
5. Large retail store far from supplier 

The fitness threshold for this particular test suite is set at 
24200000. Don’t forget that algorithm configurations mapped to 
smaller values are said to be more fit than those that produce 
larger values. In this test suite, R = 5, Co = 10, and CH = 1. Also, 
Table 2.2 displays the initial values for the remaining variables.  

Table 2.2 Secondary Test Suite values 

R# qavg qsd M Cmin Cmax Lmin Lmax CB,LS 
1 10 6 8 26 35 1 8 40 
2 29 15 6 24 50 1 7 116 
3 84 34 5 32 65 1 6 336 
4 247 74 3 21 88 1 3 988 
5 734 147 2 28 80 1 4 2936 

3. IMPLEMENTATION 
Section 3 begins by outlining the implementation of the ECs 
employed on this particular problem, followed by a more 
thorough description of the implementation of PSOs, the top 
performing EC, and then the implementation of the four best 
performing algorithms. Note: The list of parameter values 
mentioned in each subsection is only fully tested on the out-of-
the-box algorithms, while each modification tests simply the best 
parameter set combination from each out-of-the-box algorithm. 

3.1 ECs Overview 
3.1.1 EP 
Four different EP algorithms are implemented in an attempt to 
solve the Supply-Chain Management Problem:  

1. Standard EP (SEP) 
2. Continuous Standard EP (CSEP) 
3. Meta EP (MEP) 
4. Continuous Meta EP (CMEP) 

In an effort to improve performance, a modified algorithm for 
each EP is created. Next, are the characteristics employed in each. 
Selection strategy: (µ + λ) for all EPs (λ = 1 for CSEP and CMEP 
and λ = µ for SEP and MEP). Also, competition-determined 
subjective fitness for population size ≥ 10 for SEP and MEP. 
Parent selection: random parent selection is used for CSEP and 
CMEP, while every individual in the population servers as a 
parent in the remaining two EPs. 

Variation: mutation with Gaussian variation is used by all EPs. 
Moreover, MEP and CMEP utilize strategy parameters η and σ, 
which are evolved throughout the algorithm, to adapt the amount 
of mutation to best fit the particular problem. 
Parameter Values: 

µ: [5, 9, 10, 50, 100] 
C: [100, 200, 500, 550, 1000, 2000, 3000, 3500, 4000, 4500, 
5000, 6000, 10000, 13000, 20000, 50000, 100000, 200000, 
500000, 1000000] 
# of competitors: [1, 7, 2/3µ] 
η :[0.1, 0.2, 0.3, 0.4] 
σ: [10%, 30%, 50%]. 

The C value is used as a divisor to the square root of the parent’s 
fitness in SEP and CSEP because the mutation originally yielded 
by the square root of the parent’s fitness almost always landed 
outside the allele bounds. Note that the aforementioned 
parameters do not apply to all EPs, but are used where applicable.  

3.1.2 GA 
This research showed that GAs can efficiently search for a 
solution to the Supply Chain Management System Problem. Four 
different genetic algorithms are implemented:  

1. Binary-Coded Elitist Generational GA (BCEG) 
2. Real-Coded Elitist Generational GA (RCEG) 
3. Binary-Coded Steady State GA (BCSS) 
4. Real-Coded Steady State GA (RCSS) 

As with the EPs, four modifications are devised in an attempt to 
achieve superior performance. The characteristics of each GA are 
as follows.  
Selection strategy: Generational Strategy is used with BCEG and 
RCEG, while always keeping the best found individual (elitism). 
A Steady State Strategy is used for BCSS and RCSS. 
Parent Selection: Binary Tournament selection is used for GAs. 
Variation: Uniform Crossover is used for the two Binary-Coded 
GAs, while BLX-0.5 is used for the Real-Coded algorithms. 
Parameter Values: 

µ: [5, 10, 20, 50, 100] 
BMR: [1%, 3%, 5%, 7%, 10%] 
Resolution: 20 bit gene representation (Binary-Coded) 
σ: [1%, 3%, 5%, 7%, 9%, 10%, 30%, 50%, 70%, 90%]  

3.1.3 EDA 
Although numerous EDA variants exist, this research is limited to 
the following four: 

1. Binary-Coded EDA (BCE) 
2. Real-Coded EDA (RCE) 
3. Elitist Binary-Coded EDA (EBCE) 
4. Elitist Real-Coded EDA (ERCE) 

Once again, four more variations are created. The main aspects of 
the four out-of-the-box algorithms are listed below: 
Selection strategy: A Generational Strategy is used for all EDAs, 
while EBCE and ERCE also always keep the best found 
individual (elitism). 
Parent Selection: The number of parents selected (µ) is set at 50% 
of the population size.  
Variation: A probability distribution function is used to create 
offspring in Binary-Coded EDAs, whereas, a probability density 
function is used for their Real-Coded counterparts. 
Parameter Values: λ: [6, 10, 20, 30, 40, 50, 100] 

3.1.4 PSO 
This work implements four canonical PSO algorithms: 

1. Ring-Topology Full-Model PSO (OOBRT) 



2. Star-Topology Full-Model PSO (OOBST) 
3. Ring-Topology Full-Model PSO (with Constriction 

Coefficient) (OOBRTK) 
4. Star-Topology Full-Model PSO (with Constriction 

Coefficient) (OOBSTK) 
Each of these satisfies the Full-Model definition by having 
positive-valued learning rates. More specifically, the learning 
rates are set to 2.05 to comply with the requirements of Clerc’s 
Constriction Coefficient K [2]. The other influential 
characteristics are as follows: 
Social Influence: Both Ring-Topology algorithms utilize a 
neighborhood best location in calculating their social component, 
whereas, both Star-Topology algorithms use the global best 
location in computing the social component. 
Variation: Velocity vectors supply PSOs with variation, and are 
initialized to 0. 
Parameter Values: 

µ: [10, 20, 30, 40, 50, 100, 125] 
Vmax = Xmax 

Vmin = -Xmin 

3.2 PSO Overview 
Each technique made use of standard equations found in [1]. In 
Eq. 3.1, a particle’s velocity Vid is updated using the particle’s 
cognition factor Pid and social factor Pgd. The cognition factor is 
the best location a particle has ever occupied, whereas the social 
factor is the best location ever occupied by one of its neighbors. 
Each component Xid of the particle’s current location is updated 
using Eq. 3.2. This update occurs asynchronously; in other words, 
the neighborhood best or global best location (depending on 
algorithm) is updated after every one of the x-vectors updates.  
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The learning rate parameters φ1 and φ2 are each set to positive 
values in accordance with the Full-Model specification. The PSOs 
use various methods for controlling the magnitude of the velocity. 
Moreover, a v-vector’s component is set to 0 when the 
corresponding x-vector component goes outside one of its 
boundaries. Finally, all algorithms utilize asynchronous updates. 
That is, topological information is updated during the course of 
each iteration, rather than in between iterations.  

3.2.1 PSO Ring 
As with all PSOs, the ring-based Full-Model PSO searches a 
fitness landscape using a collection of particles, each of which 
encapsulates vectors representing its current location, best found 
location, velocity, and the fitness values corresponding to the two 
locations [9]. The trajectory of any given particle over time is 
determined by three factors: the location of its best fitness value, a 
certain degree of (pseudo) random behavior, and the influence of 
their neighbors. A neighborhood of a particle P is a predefined 
grouping of particles containing P, such that P “knows” the best 
location ever occupied by every particle in the set. Such 
knowledge can be limited to neighborhoods of a specific size. In 
each ring-based PSO, these neighborhoods are overlapping, fixed-
length arcs of a predefined and static circle formed by the particles 
(hence the name ring topology). In this implementation, each 
neighborhood consists of three particles. Each ring-based PSO 
first initializes its particle population. Recall that each particle i 
contains three vectors xi, pi, and vi that respectively denote the 

particle’s current location, best location, and velocity. Initially, 
the components of xi are randomly generated values that lie within 
problem specific bounds. Vector pi is set equal to xi, and vi is 
initialized to the zero vector. The current location vectors are then 
evaluated using the fitness function, and the iterative process 
begins. During every iteration, each particle changes its location 
using the update equations (Eq. 3.1 and Eq. 3.2). 

3.2.2 PSO Star 
A Star Topology PSO differs from a Ring Topology PSO very 
little. Using a star topology means that every particle is connected 
to every other particle in such a way that it knows where the best 
found particle is, no matter how far. This knowledge leads to its 
second and final difference: how the particle is updated. Again, 
the updating formula used is very similar to ring topology, with 
one slight difference, the use of a global best solution, instead of a 
neighborhood best solution. When computing the social 
component of the equation, the global best solution is used 
instead of the neighborhood best as in a ring topology.  

3.2.3 Constriction Coefficient (K) 
[2] defines a constriction coefficient, K, which is designed to limit 
the velocity vector’s magnitude. The definition of K is provided in 
Eq. 3.3 and utilized to compute the velocity in Eq. 3.4.  
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3.3 Best Performers 
Among all algorithms implemented in the client-mandated test 
suite, the best performing four are three PSO modifications and 
one out-of-the-box PSO.  The implementation of each of these 
four algorithms is outlined in the following subsections. 

3.3.1 Probabilistic Dual-Topology Full-Model PSO 
(PDT) 
[4] concludes that using small neighborhoods prevents premature 
convergence, whereas the use of global neighborhoods increases 
convergence speed. Since both of these properties are desirable, 
PDT incorporates both small and large neighborhoods. In 
particular, PDT tracks the best locations in three-particle 
neighborhoods and a global neighborhood. When a particle 
updates, it has a 100 * λ % chance of using the neighborhood best 
location pid shown in Eq. 3.1. It has a 1-100 * λ % chance of using 
the global best individual in place of the neighborhood best. The 
value of λ decreases with each update iteration through the 
population according to the equation 
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where t is the iteration number initially equal to zero. Thus, this 
modification encourages a high level of variation initially, but 
gradually focuses the search as time progresses. In this manner, it 
continues to explore a large part of the fitness landscape but has 
faster convergence than with the out-of-the-box Ring-Topology 
Full-Model PSO.  

3.3.2 Star-Topology Full-Model PSO (OOBST) 
This is the same Star-Topology Full-Model PSO, described in [1]. 



3.3.3 Star-Topology Full-Model PSO using 
dynamically-adjusting learning rates (STLR) 
This modification comes along the lines of earlier work done in 
[1]. It experiments with raising, lowering, and dynamically 
adjusting the social and cognitive learning rates φ1 and φ2 in the 
x-vector updating equation (refer to Eq. 3.1 and Eq. 3.2). Instead 
of using φ1 and φ2 by themselves, each are added to an adjusting 
ratio ri, as seen in Eq. 3.5. Ratio ri is computed by dividing the 
current number of function evaluations so far, f, by the maximum 
number of function evaluations allowed, m, then multiplying that 
quantity by φ1 (Eq. 3.6), or by φ2 (Eq. 3.7). 
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Experiments are done with φ1 and φ2 ranging from 1.0 to 3.0, as 
well as subtracting ri instead of adding it to the corresponding φ. 
This means that the learning rate starts at a particular value and 
then either increases as the algorithm progresses, or decreases as 
the algorithm progresses. Furthermore, this leads the learning rate 
to either double by the end of the algorithm, or get to 0 by the end 
of the algorithm. The best results are achieved when φ1 and φ2 
are set between 1.7 and 2.0, with 1.8 along with addition to φ1 and 
φ2, yielding the most successful results. 

3.3.4 Gaussian-based Star-Topology Full-Model PSO 
along with the Constriction Coefficient (GBST) 
In GBST, the uniform variates sampled in the velocity equation 
are replaced by Gaussian variates. The effects of this method are 
further detailed in Section 5. 

4. RESULTS 
All 32 algorithms are tested under the client mandated test suite, 
however, only the four best performing algorithms are also tested 
under the secondary test suite. For the brevity of this paper, only 
the results for the best performing algorithms are reported. 

4.1 Results of Client-Mandated Test Suite: 
Textbooks 
Among the PSOs considered in this paper, GBST clearly 
performed the best.  In terms of success rate, it surpassed the 
second best PSO by nearly 7 percentage points as shown in table 
4.1. Results also reveal that GBST achieved an average best 
fitness of 174068, which is 0.1% better than that of the second 
best performing algorithm. Finally, it required 10% fewer function 
evaluations than its closest competitor as shown in Table 4.2. 
These outcomes are explained by GBST’s appropriate balance of 
selection pressure and variation. Because the best location ever 
found by the PSO serves as a focus for the entire swarm, the star 
topology guides GBST quickly toward a solution. Its use of the 
Gaussian distribution in evolving particle velocity, however, 
provides for an expansive search of the fitness landscape.  

Table 4.1:  Success Rates 

Algorithm PDT STLR OOBST GBST 
Success Rate 70.0% 80.0% 76.7% 86.7% 

Table 4.2:  Averages and Standard Deviations for function 
evaluations needed to get below the threshold (174400) 

Algorithm PDT STLR OOBST GBST 
Average 330.3 316.1 318.4 257.3 

Standard Dev. 137.8 128.4 142.4 102.0 

4.2 Results of Second Test Suite: Toothpaste 
Again, GBST performed the best. In terms of success rate, it beat 
the second best PSO by 20 percentage points as shown in Table 
4.3. Further results of this test suite also show that GBST 
achieved an average best fitness of 23806803, about 1.9% less 
than that of the second best performing algorithm. It also called 
for 22.9% fewer function evaluations than its closest competitor 
as shown in table 4.4. The explanation for these statistics mirrors 
that of the results associated with test suite 1.  

Table 4.3:  Success Rates 

Algorithm PDT STLR OOBST GBST 
Success Rate 16.7% 70.0% 53.3% 90.0% 

 
Table 4.4:  Averages and Standard Deviations for function 
evaluations needed to get below the threshold (24200000) 

Algorithm PDT STLR OOBST GBST 
Average 451.3 376.5 402.4 290.1 

Standard Dev. 113.3 130.1 107.6 99.1 

4.3 Comparison of Results 
Fig. 4.1 shows that while the success rates varied in proportional 
distance, the algorithms performed relative to each other. In both 
test suites GBST performed the best with STLR, OOBST, and 
PDT following. This correlation is also seen for the average best 
fitness and the average number of function evaluations. Fig. 4.2 
depicts the association between the average number of function 
evaluations for the two test suites. 
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Figure 4.1: Success Rate 

 
There is one case in which the algorithms rank differently and that 
is on the average best fitness between STLR and OOBST shown 
in Fig. 4.2. It is speculated that this discrepancy is due to the 
nature of OOBST and its high risk of “fly-overs” meaning it will 
bypass any good solution. With a larger search space in the 
toothpaste test suite, it runs a smaller chance of flying over a good 
solution. 



 
Figure 4.2: Average Function Evaluations 

(Lower is Better) 

5. DISCUSSION 
A single, universally-best EC does not exist. This research loudly 
echoes and supports this sentiment. Several algorithms from each 
of the EC paradigms performed well on this problem. GAs and 
EDAs, for example, came within 10 percentage points of the best 
algorithms. For this particular problem, however, PSOs proved 
most adept. Their use of social information provided an 
evolutionary advantage that proved imperative to solution 
discovery within the context of the supply chain management 
problem. In Kennedy and Eberhart’s original paper on PSOs [9], 
the authors observed that particles which “overshoot” locations 
associated with best known fitness values are responsible for the 
greatest improvements in the swarm’s global fitness values. That 
is, particles with high velocity discover new and better regions of 
the fitness landscape more often than slow moving particles. 
These particles, however, also benefit the population by “micro-
exploring” known regions for optima. This model of PSO search 
is so germane to the author’s conception of the strategy that they 
attempted to manually stimulate the evolution of “explorers” and 
“settlers”. This approach seems to lend itself well to the Multiple 
Retailer Supply Chain Management Problem.  
 
The use of Gaussian variates in the adaptation of particles’ 
velocity vectors provides greater separation among particles. In 
the canonical swarm [1], the source of randomness is a uniform 
distribution on the interval [0,1). Thus, from a population 
perspective, velocities are not biased toward large or small values. 
In contrast, 66% of Gaussian variates have magnitudes that lie in 
this interval. These latter variates, however, are biased toward the 
origin – a characteristic affecting the emergence of “settlers”. 
Given the infinite tails of Gaussian distribution, some velocities 
are randomized by exceptionally large values. The particles 
corresponding to such variates comprise the “explorers”. This 
division of particles is appropriate to this problem because of the 
specific nature of the fitness landscape. While high particle 
velocity has been associated with poor performance in other 
contexts [1], it is quite beneficial in cases where optima exist 
along search space boundaries. Thus, GBST “explorers” quickly 
delineate particular bounds as “good” regions after which GBST 
“settlers” locate the best boundary locations. A nexus between 
these two groups is achieved via the global topology. This global 
influence, in fact, explains the high performance of each of our 
best performing algorithms. The benefits of using a global 
topology have been well documented [1]. The fact that PDT relies 

only partially on global information explain why this algorithm 
performed the worst among our best algorithms. STLR performed 
better than OOBST because its use of dynamically increasing 
learning rates accelerated particles. As with GBST, this property 
leads to early boundary exploration. STLR, however, lacks a 
second category of particle to micro-explore newly discovered 
regions. A lack of diversity, therefore, lends rationale to the 
observed inferiority of this algorithm to OOBST.  

6. CONCLUSION AND FUTURE WORK 
In this study, standard techniques from several EC paradigms as 
well as problem-tailored modifications are applied to an issue of 
tremendous economic and theoretic value: The Multiple Retailer 
Supply Chain Management Problem. Among the ECs considered, 
it is learned that PSOs provide the best high performance solution 
for this particular case. Since PSOs are highly parameterized, they 
provide many opportunities for future research. For example, 
additional population sizes can be considered. Instead of using 
Full Models, each PSO can be adapted to make use of the Social, 
Selfless, and Cognitive models as described in [8]. Different 
neighborhood size can be utilized. The application of Evolution 
Strategies to this problem could provide further insights. Finally, 
the problem itself could be extended to model additional features 
of the real world that have an impact on commercial wholesaling. 
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